An Accurate Fourier-Spectral Solver for Variable Coefficient Elliptic Equations
نویسندگان
چکیده
We develop a solver for nonseparable, self adjoint elliptic equations with a variable coefficient. If the coefficient is the square of a harmonic function,a transformation of the dependent variable, results in a constant coefficient Poisson equation. A highly accurate, fast, Fourier-spectral algorithm can solve this equation. When the square root of the coefficient is not harmonic, we approximate it by a harmonic function. A small number of correction steps are then required to achieve high accuracy. The procedure is particularly efficient when the approximation error is small. For a given function this error becomes smaller as the size of the domain decreases. A highly parallelizable, hierarchical procedure allows a decomposition into small sub-domains. Numerical experiments illustrate the accuracy of the approach even at very coarse resolutions. Key-Words: Fast spectral direct solver, Poisson equation, nonseparable elliptic equations, correction steps.
منابع مشابه
High Order Fourier-Spectral Solutions to Self Adjoint Elliptic Equations
We develop a High Order Fourier solver for nonseparable, selfadjoint elliptic equations with variable (diffusion) coefficients. The solution of an auxiliary constant coefficient equation, serves in a transformation of the dependent variable. There results a ”modified Helmholtz” elliptic equation with almost constant coefficients. The small deviations from constancy are treated as correction ter...
متن کاملA direct solver for variable coefficient elliptic PDEs discretized via a composite spectral collocation method
A numerical method for variable coefficient elliptic problems on twodimensional domains is presented. The method is based on high-order spectral approximations and is designed for problems with smooth solutions. The resulting system of linear equations is solved using a direct solver with O(N1.5) complexity for the precomputation and O(N logN) complexity for the solve. The fact that the solver ...
متن کاملA Direct Solver with O(N) Complexity for Variable Coefficient Elliptic PDEs Discretized via a High-Order Composite Spectral Collocation Method
A numerical method for solving elliptic PDEs with variable coefficients on two-dimensional domains is presented. The method is based on high-order composite spectral approximations and is designed for problems with smooth solutions. The resulting system of linear equations is solved using a direct (as opposed to iterative) solver that has optimal O(N) complexity for all stages of the computatio...
متن کاملSpatially Dispersionless, Unconditionally Stable FC-AD Solvers for Variable-Coefficient PDEs
We present fast, spatially dispersionless and unconditionally stable high-order solvers for Partial Differential Equations (PDEs) with variable coefficients in general smooth domains. Our solvers, which are based on (i) A certain “Fourier continuation” (FC) method for the resolution of the Gibbs phenomenon, together with (ii) A new, preconditioned, FC-based solver for two-point boundary value p...
متن کاملLocally-corrected spectral methods and overdetermined elliptic systems
We present fast locally-corrected spectral methods for linear constant-coefficient elliptic systems of partial differential equations in d-dimensional periodic geometry. First, arbitrary second-order elliptic systems are converted to overdetermined first-order systems. Overdetermination preserves ellipticity, while first-order systems eliminate mixed derivatives, resolve convection-diffusion co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005